
https://bit.do/pgsessions-postgresql-
kubernetes

PostgreSQL and Kubernetes
Database as a Service without a Vendor Lock-in

Oleksii Kliukin

PostgreSQL Sessions 10

Paris, France

About me

• PostgreSQL Engineer @ Adjust

• PostgreSQL Contributor

• Organizer of PostgreSQL Meetup Group in Berlin

• Worked on Patroni, Postgres Operator, Spilo and
other Zalando projects.

PostgreSQL advantages

• Designed for reliability

• SQL Standard Conformance

• Actively developed by the community

• Scalable (physical/logical replication, sharding)

• Performant

• Extensible (custom types, indexes, wal records, background workers,
planner/executor hooks)

PostgreSQL is open-source

• Source code is available in git

• Learn how your database works

• Implement new features (or pay someone to do it)

• Fix bugs and test fixes without waiting for new release

• No license costs, no price per core or per server

PostgreSQL is open-source

• Source code is available in git

• Learn how your database works

• Implement new features (or pay someone to do it)

• Fix bugs and test fixes without waiting for new release

• No license costs, no price per core or per server

From 1 to 1001 PostgreSQL clusters

Multiple PostgreSQL clusters

• Smaller databases

• Simpler maintenance

• Simpler security model

• One database per application

• Hundreds of smaller databases with microservices

Managing multiple PostgreSQLs

• Manual way: DBAs do everything by themselves (using shell scripts, ssh,
…)

• Semi-automated way. DBAs run Ansible/Rex/Puppet/… scenarios to
converge the cluster/clusters to the desired state

• Automated way: End-users create new clusters directly using Database as
a Service (DBaaS)

Database as a Service

• End-user initiated:

• Create cluster

• Update database configuration

• Add resources to the cluster (replicas, disk, CPU, memory)

• Delete cluster

Database as a Service

• Automatically handled:

• Management of resources

• Export data to monitoring

• Service discovery

• Disaster recovery

How to get DBaaS

• Pay someone (Google, AWS, Amazon)

• Vendor-lock

• Not always community PostgreSQL (i.e. Amazon RDS or Aurora)

• You may not have all features (i.e. no superuser, logical replication, …)

• Build it yourself

• Expensive and requires a lot of expertise outside of the database world

• Duplication of efforts between different companies

• Tied to your existing infrastructure

• Embrace the open-source

PostgreSQL DBaaS on Kubernetes

What is Kubernetes

• Set of open-source services

• Running on one or more servers

• Physical or cloud based (AWS, GCE,
Azure, Digital Ocean etc)

• Automating deployment

• Scaling and management

• Container-based applications

Kubernetes provides

• Unified API abstraction for multiple different infrastructure providers (i.e.
AWS, GCP, Azure)

• Declarative based deployments of resources and applications

• Repeatable deployments with containers

• Extensible services to define and manage user-specified resources

Master

API server

Controller Mgr

Job Scheduler

ETCD

Node

Pod Pod Pod

KubeletKube-proxy
Node

Pod Pod Pod

Kubelet Kube-proxy

Inter-node networking

Building blocks: Pods

• Group one or more related
containers

• On the same host

• Share host resources (i.e network)

• Usually one instance of the app

• Scheduled to run on nodes based
on memory, cpu requirements

metadata:
 name: my pod
 labels: application=myapp, version=v1, environment=release
spec:
 containers: AppContainer, Sidecar
 volumes: volumeA

App container Sidecar

Volume

Building blocks: Metadata

• Labels (i.e. app=postgres, name = shop, role=master,
environment=production)

• Selectors to choose objects based on labels

• Annotations to attach arbitrary key-value metadata (i.e image_version=p42)

• Attached to most objects (nodes, pods, persistent volumes, services,
endpoints, etc)

Building blocks: Nodes

• A physical or virtual server (i.e. EC2
or GCE instance)

• Running as many pods as it
provides resources by Kubelet

• Container runtime (i.e. docker)

• kube-proxy to route requests to
pods

Pod A Pod B Pod C

Docker runtime kube-proxy

Building blocks: Services and Endpoints

• Define how do clients connect to
pods

• Endpoints contain actual addresses

• Services can create endpoints

• Services may pick pods to connect
using selectors

192.168.1.1 192.168.1.2

role: master role: replica

pgsql: shop.svc.local

service: shop.svc.local
selector: role=master

endpoint
addresses: 192.168.1.1

Building blocks: Persistent Volumes

• A storage volume that persists
between pod terminations

• Examples: EBS, GCE PD, NFS

• Managed by Persistent Volume
Claims (PVC)

• PVC may request storage, size and
access mode

• Storage is controlled with
StorageClasses

Storage class:

EBS

kind:
PersistentVolumeClaim
storage: 100Gi
accessMode:
ReadWriteOnce
storageClassName:
GP2

PVC request

POD

Container Volume

PVC satisfied

mount

Building blocks: StatefulSets

• Controller that binds pods and
persistent volumes together

• Each pod gets attached a persistent
volume

• On restart, the same volume and IP
address is attached to a pod

• Statefulset manages the defined
amount of pods (killing excessive,
starting missing)

StatefulSet
Name: app
Replicas: 3

pv app-data-1pod app-1

pod app-2

pod app-3

pv app-data-2

pv app-data-3

Building blocks: CRD

• Custom user-user-defined
controllers

• Read YAML manifests submitted by
users with custom-custom-defined
schema (custom-resource definition
instance)

• Create and maintain Kubernetes
objects based on the CRD instance
manifest

apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:
 name: acid-minimal-cluster
 namespace: test
spec:
 teamId: "ACID"
 volume:
 size: 1Gi
 numberOfInstances: 2
 users:
 zalando:
 - superuser
 - createdb
 foo_user:
 databases:
 foo: zalando
 postgresql:
 version: "10"

Building blocks: ConfigMaps

• Key-value storage of text string

• Useful for storing configuration

apiVersion: v1
kind: ConfigMap
metadata:
 name: postgres-operator
data:
 watched_namespace: "*"
 cluster_labels: application:spilo
 cluster_name_label: version
 pod_role_label: spilo-role

 workers: "4"
 docker_image: spilo-cdp-10:1.5-p35
 super_username: postgres
 aws_region: eu-central-1
 db_hosted_zone: db.example.com
 pdb_name_format: "postgres-{cluster}-pdb"
 api_port: "8080"
 ...

Building blocks: Secrets

• Key-value storage of text string

• Values are base64 encoded

• Usually restrictive access

• Useful for storing logins-passwords

apiVersion: v1
data:
 # user batman with the password justice
 batman: anVzdGljZQ==
kind: Secret
metadata:
 name: postgresql-infrastructure-roles
 namespace: default
type: Opaque

Operator pattern

• Custom controller to process user-supplied resources

• Register CRDs

• Perform CRUD operations via the API

• Encapsulate custom knowledge about the domain (i.e. databases)

Zalando Postgres Operator

• Implements the custom controller to manage Postgres HA clusters

• Watches CRD objects of type postgresql

• Creates and deletes clusters

• Updates Kubernetes resources and Postgres configuration

• Periodically validates running Kubernetes objects against manifest
definitions

Zalando Postgres Operator actions

OPERATOR

kubectl create -f clustera.yaml

kubectl update -f clusterb.yaml

kubectl delete -f clusterc.yaml

OPERATOR

Postgres
statefulset

ConfigMap
Infrastructure

roles

Cluster secrets

re
ad

sreads

cr
ea

te
s

reads

creates

creates

creates

service

endpoint

deploys

manifest

Postgres Dockerized

• Containerized binaries

• Data directory on an external volume mount

• Configuration controlled by environment variables

• Many extensions (contrib, pgbouncer, postgis, pg_repack) installed together with
multiple versions of PostgreSQL.

• Zalando own open-source extension: pam_oauth2 and bgmon

• Compressed to save space and speedup pod startup

• Patroni-based automatic failover for HA clusters

Automatic Failover with Patroni

• Patroni is a Python daemon that manages one PostgreSQL instance.

• Patroni runs alongside PostgreSQL on the same system (needs access to
the data directory)

• Instances are attributed to the HA cluster based on the cluster name in
Patroni configuration.

• At most one instance in the HA cluster holds the master role, others
replicate from it.

Managing cluster state

• Patroni keeps its cluster state in a distributed and strongly-consistent key-value system aka DCS
(Etcd, Zookeeper, Consul or Kubernetes native API)

• A leader node name is set as a value of the leader key /$clustername/leader that expires after
pre-defined TTL

• The leader node updates the leader key more often than expiration TTL, preventing its expiration

• A non-leader node is not allowed to update the leader key with its name (CAS operation).

• Each instance watches the leader key

• One the leader key expires, each remaining instance decides if it is “healthy enough” to become
a leader

• The first “healthy” instance that creates the leader key with its name becomes the leader.

Avoiding split-brain

• Becoming a leader: first write the key in DCS, then promote.

• Demoting: first demote, then delete the leader key

• Member is never healthy if the old master is still running

• Member connects directly to other cluster members to get most up-to-
date information

• Member is never healthy if its WAL position is behind some other member
or too far behind the last known master position.

/leader: “A”, TTL: 30

PATRONI

PATRONI

PATRONI

Node A: primary

Node B: replica

Node C: replica

streaming

streaming

ETCD 1
ETCD 2

ETCD 3

Update(“/leader”,“A”,TTL=30,prevValue=“A”)
Success

watch (“/leader”)

watch (“/leader”)

/leader: “A”, TTL: 17

PATRONI

PATRONI

PATRONI

Node A: primary

Node B: replica

Node C: replica

ETCD 1
ETCD 2

ETCD 3

watch (“/leader”)

watch (“/leader”)

/leader: “A”, TTL: 0

PATRONI

PATRONI

Node B: readonly

Node C: readonly

ETCD 1
ETCD 2

ETCD 3

notify(/leader, expired=true)

notify(/leader, expired=true)

/leader: “A”, TTL: 0

PATRONI

PATRONI

Node B: readonly

Node C: readonly

ETCD 1
ETCD 2

ETCD 3

PATRONI

Node B:
GET A:8008/patroni -> timeout

GET C:8008/patroni -> wal_position: 100

Node C:
GET A:8008/patroni -> timeout

GET B:8008/patroni -> wal_position: 100

/leader: “B”, TTL: 30

PATRONI

PATRONI

Node B: readonly

Node C: readonly

ETCD 1
ETCD 2

ETCD 3

Create(“/leader”,

“B”,
TTL=30,

prevExists=false)

Create(“/leader”,

“C”,
TTL=30,

prevExists=false)

SUCCESS

FAIL

/leader: “B”, TTL: 30

PATRONI

PATRONI

Node B: primary

Node C: replica

ETCD 1
ETCD 2

ETCD 3

watch(/leader)

PROMOTE

streaming

From Kubernetes to Postgres HA

• Postgres Operator creates a StatefulSet

• A StatefulSet creates N identical pods

• Each pod runs Postgres docker image with
Patroni

• Patroni initiates leader election, one pod is
elected as primary

• Rest of the pods find the primary in the
same cluster as they are and stream from it

Operator maintenance tasks

• Operator acts on manifest updates

• Configuration changes

• Resources changes (memory, disk, number of instances)

• Kubernetes cluster updates with minimum downtimes

Open-source

• Patroni: https://github.com/zalando/patroni

• Spilo (Postgres docker image): https://github.com/zalando/spilo

• PG Operator: https://github.com/zalando-incubator/postgres-operator

• Pam oauth: https://github.com/CyberDem0n/pam-oauth2

• bg_mon (background worker for top-like monitoring) https://github.com/
CyberDem0n/bg_mon

https://github.com/zalando/patroni
https://github.com/zalando/spilo
https://github.com/zalando-incubator/postgres-operator
https://github.com/CyberDem0n/pam-oauth2
https://github.com/CyberDem0n/bg_mon
https://github.com/CyberDem0n/bg_mon

Thank you!
https://bit.do/pgsessions-postgresql-kubernetes

email: alexk@hintbits.com
twitter: @hintbits

https://bit.do/pgsessions-postgresql-kubernetes
mailto:alexk@hintbits.com

Questions?

email: alexk@hintbits.com
twitter: @hintbits

mailto:alexk@hintbits.com

