https://bit.do/pgsessions-postgresql-
kubernetes

PostgreSQL and Kubernetes

Database as a Service without a Vendor Lock-in

Oleksii Kliukin

PostgreSQL Sessions 10
Paris, France

About me

* PostgreSQL Engineer @ Adjust
e PostgreSQL Contributor
» Organizer of PostgreSQL Meetup Group in Berlin

 Worked on Patroni, Postgres Operator, Spilo and
other Zalando projects.

PostgreSQL advantages

Designed for reliability
SQL Standard Conformance
Actively developed by the community

Scalable (physical/logical replication, sharding)

Performant

Extensible (custom types, indexes, wal records, background workers,
planner/executor hooks)

PostgreSQL is open-source

Source code is available in git
Learn how your database works

Implement new features (or pay someone to do it)

Fix bugs and test fixes without waiting for new release

No license costs, no price per core or per server

PostgreSQL is open-source

Source code is available in git
Learn how your database works

Implement new features (or pay someone to do it)

Fix bugs and test fixes without waiting for new release

No license costs, no price per core or per server

From 1 to 1001 PostgreSQL clusters

Multiple PostgreSQL clusters

Smaller databases
Simpler maintenance

Simpler security model

One database per application

Hundreds of smaller databases with microservices

Managing multiple PostgreSQLs

 Manual way: DBAs do everything by themselves (using shell scripts, ssh,

)

¢ Semi-automated way. DBAs run Ansible/Rex/Puppet/... scenarios to
converge the cluster/clusters to the desired state

 Automated way: End-users create new clusters directly using Database as
a Service (DBaaS)

Database as a Service

End-user initiated:

* Create cluster

 Update database configuration

 Add resources to the cluster (replicas, disk, CPU, memory)

e Delete cluster

Database as a Service

* Automatically handled:
 Management of resources
 EXport data to monitoring
e Service discovery

 Disaster recovery

How to get DBaaS

 Pay someone (Google, AWS, Amazon)

* Vendor-lock

* Not always community PostgreSQL (i.e. Amazon RDS or Aurora)

* You may not have all features (i.e. no superuser, logical replication, ...)
* Build it yourself

 EXxpensive and requires a lot of expertise outside of the database world

* Duplication of efforts between different companies

* Tied to your existing infrastructure

« Embrace the open-source

PostgreSQL DBaaS on Kubernetes

What i1s Kubernetes

Set of open-source services

Running on one or more servers

Physical or cloud based (AWS, GCE,
Azure, Digital Ocean etc)

Automating deployment

Scaling and management

Container-based applications

Kubernetes provides

Unified API abstraction for multiple different infrastructure providers (i.e.
AWS, GCP, Azure)

Declarative based deployments of resources and applications
Repeatable deployments with containers

Extensible services to define and manage user-specified resources

Master

C

APl server

7

@

Controller Mgr

g

Job Scheduler

Node

N
Kube-proxy Kubelet

040
00606

"Node

Kubelet Kube-proxy)

©s¢ D
066

Inter-node networkina

Building blocks: Pods

Group one or more related
containers

On the same host
Share host resources (i.e network)
Usually one instance of the app

Scheduled to run on nodes based
ONn Memory, cpu requirements

metadata:

name: my pod

labels: application=myapp, version=v1, environment=release

Spec:

containers: AppContainer, Sidecar
volumes: volumeA

App container

Sidecar

Volume

Building blocks: Metadata

Labels (i.e. app=postgres, name = shop, role=master,
environment=production)

Selectors to choose objects based on labels
Annotations to attach arbitrary key-value metadata (i.e image_version=p42)

Attached to most objects (nodes, pods, persistent volumes, services,
endpoints, etc)

Building blocks: Nodes

kKube-proxy

Docker runtime

A physical or virtual server (i.e. EC2
or GCE instance)

Running as many pods as it
provides resources by Kubelet

Container runtime (i.e. docker)

Kube-proxy to route requests to
pods

Building blocks: Services and Endpoints

role: master role: replica
S
Define how do clients connectto | | <% | |
pOdS 192.168.1.1 192.168.1.2

Endpoints contain actual addresses

endpoint
addresses: 192.168.1.1

Services can create endpoints

Services may pick pods to connect . e service: shop.sve.local

using selectors selector: role=master

pPgsql: shop.svc.local

'y

Building blocks: Persistent Volumes

A storage volume that persists
between pod terminations

Examples: EBS, GCE PD, NFS

Managed by Persistent Volume
Claims (PVC)

PVC may request storage, size and
access mode

Storage is controlled with
StorageClasses

kind: &

PersistentVolumeClaim
storage: 100G

accessMode: — PVC request

ReadWriteOnce
storageClassName:
GP2

-

_—
\

T
—

Storage class: s

EBS
I

POD

Container mount —

Volume

PVC satisfied

Building blocks: StatefulSets

Controller that binds pods and
persistent volumes together

Each pod gets attached a persistent
volume

On restart, the same volume and IP
address Is attached to a pod

Statefulset manages the defined
amount of pods (killing excessive,
starting missing)

Name: app
Replicas: 3

pod app-1

@<

pod app-2

94

pod app-3

94

StatefulSet

pv app-data-1

©

pv app-data-2

©

pv app-data-3

©

Building blocks: CRD

apiVersion: "acid.zalan.do/v1l"

« Custom user-user-defined kind: postgresql

metadata:
controllers name: acid-minimal-cluster
namespace: test
_ | spec:

* Read YAML manifests submitted by teairmId: "ACID"
users with custom-custom-defined e er 1Ci
schema (custom-resource definition numberOfInstances: 2
: users.
instance) alando:

— superuser
. : — createdb

* Create and maintain Kubernetes f00 USer:

objects based on the CRD instance databases:

foo: zalando
postgresqgl:
version: "10"

manifest

Building blocks: ConfigMaps

apiVersion: vl

kind: ConfigMap

metadata:
name: postgres—operator

data:
watched namespace: "x"
cluster_labels: application:spilo
cluster_name_label: version

» Key-value storage of text string pod_role_label: spilo-role

workers: "4"
, : , docker _image: spilo-cdp-10:1.5-p35
e Useful for storing configuration Super_ase.-ﬂame:ppostgrgs i
aws_region: eu-central-1
db_hosted zone: db.example.com
pdb_name_format: "postgres-{cluster}-pdb"
apli_port: '"8080"

Building blocks: Secrets

apiVersion: vl
data:
user batman with the password justice
Values are base64 encoded ‘batman: anVzdGljZQ==
kind: Secret
metadata:
Usually restrictive access name: postgresql-infrastructure-roles
namespace: default
type: Opaque

Key-value storage of text string

Useful for storing logins-passwords

Operator pattern

e Custom controller to process user-supplied resources

* Register CRDs
 Perform CRUD operations via the API

 Encapsulate custom knowledge about the domain (i.e. databases)

Zalando Postgres Operator

Implements the custom controller to manage Postgres HA clusters
Watches CRD objects of type postgresq|

Creates and deletes clusters

Updates Kubernetes resources and Postgres configuration

Periodically validates running Kubernetes objects against manifest
definitions

Zalando Postgres Operator actions

Kubectl delete —f clusterc.yaml ’ 6
- kubectl update -t clusterb.yaml

OPEF ATOR

Kubectl create —f clustera.yaml .I

Infrastructure
roles

~
Postgres
statefulset

endpoint

service

imanifest

Cluster secrets

Postgres Dockerized

Containerized binaries
Data directory on an external volume mount
Configuration controlled by environment variables

Many extensions (contrib, pgbouncer, postgis, pg_repack) installed together with
multiple versions of PostgreSQL.

Zalando own open-source extension: pam_oauth2 and bgmon
Compressed to save space and speedup pod startup

Patroni-based automatic failover for HA clusters

Automatic Faillover with Patroni

Patroni is a Python daemon that manages one PostgreSQL instance.

Patroni runs alongside PostgreSQL on the same system (needs access to
the data directory)

Instances are attributed to the HA cluster based on the cluster name In
Patroni configuration.

At most one instance in the HA cluster holds the master role, others
replicate from it.

Managing cluster state

Patroni keeps its cluster state in a distributed and strongly-consistent key-value system aka DCS
(Etcd, Zookeeper, Consul or Kubernetes native API)

A leader node name is set as a value of the leader key /$clustername/leader that expires after
pre-defined TTL

The leader node updates the leader key more often than expiration TTL, preventing its expiration
A non-leader node is not allowed to update the leader key with its name (CAS operation).
Each instance watches the leader key

One the leader key expires, each remaining instance decides if it is “healthy enough” to become
a leader

The first “healthy” instance that creates the leader key with its name becomes the leader.

Avoiding split-brain

Becoming a leader: first write the key in DCS, then promote.
Demoting: first demote, then delete the leader key
Member is never healthy if the old master is still running

Member connects directly to other cluster members to get most up-to-
date information

Member is never healthy if its WAL position is behind some other member
or too far behind the last known master position.

Node A: primary

<>

PATRONI g
\ Ddafe ‘
“ L7 eade i

|

|

| 4
Y

: . Dre'/'/a/u\f?:

| Streaming Node B: replica Ceooss

|

|

|

|

|

waten U /\eadem -
PATRONI

\) ’

atch Cf eade”’
Pun W
A PATRONI -
/leader: “A”, TTL: 30

I
|
I
- ——p

S

streaming

Node C: replica

Node B: replica

(peade!)

L \Na’(.Ch
ama PATRONI

Node C: replica

ame PATRONI

/leader: “A”, TTL: 17

Node B: readonly

ama PATRONI

Node C: readonly

ama PATRONI

4 "°

\

gy(\eadet &

Header—A=, TTL: O

Node B: Node C:
GET A:8008/patroni -> timeout GET A:8008/patroni -> timeout
GET C:8008/patroni -> wal_position: 100 GET B:8008/patroni -> wal_position: 100

> 2 .
P -

Iv\i\

v
I

Node B: readonly

ama PATRONI

\
———1—
/
/

Node C: readonly

amd PATRON| A Rl

Header—A=, TTL: O

TCD 1

Node B: readonly

13 \eader“ ’
&é‘)‘) , /

ST
prev

Crea’te

>
& S OATRON|

Node C: readonl ‘ ,

ama PATRONI

e
- /leader: “B”, TTL: 30

Node B: primary
PROMOT

-—F s PATRONI
I
I

I
streaming

: Node C: replica
|

o

watchV \eade!

o

& T

- » ama PATRONI

/leader: “B”, TTL: 30

From Kubernetes to Postgres HA

Postgres Operator creates a StatefulSet
A StatefulSet creates N identical pods

Each pod runs Postgres docker image with
Patroni

Patroni initiates leader election, one pod is
elected as primary

Rest of the pods find the primary in the
same cluster as they are and stream from it

Operator maintenance tasks

Operator acts on manifest updates
Configuration changes
Resources changes (memory, disk, number of instances)

Kubernetes cluster updates with minimum downtimes

Open-source

Patroni: https://qgithub.com/zalando/patroni

Spilo (Postgres docker image): https://github.com/zalando/spilo

PG Operator: https://github.com/zalando-incubator/postgres-operator

Pam oauth: https://github.com/CyberDem0On/pam-oauth?

bg_mon (background worker for top-like monitoring) https://github.com/
CyberDemOn/bg mon

https://github.com/zalando/patroni
https://github.com/zalando/spilo
https://github.com/zalando-incubator/postgres-operator
https://github.com/CyberDem0n/pam-oauth2
https://github.com/CyberDem0n/bg_mon
https://github.com/CyberDem0n/bg_mon

Thank you!

hitps://bit.do/pasessions-postqgresal-kubernetes
emaill: alexk@hintbits.com
twitter: @hintbits

https://bit.do/pgsessions-postgresql-kubernetes
mailto:alexk@hintbits.com

Questions?

emaill: alexk@hintbits.com
twitter: @hintbits

mailto:alexk@hintbits.com

