”w

T ’
vMA
Wir vernetzen Wien.

Use Oracle from PostgreSQL

oracle fdw in migration scenarios

Laurenz Albe <laurenz.albe@wien.gv.at>
2012-10-04

What is oracle fdw?

it allows read access to Oracle tables as if they
were PostgreSQL tables

an SQL/MED Foreign Data Wrapper for Oracle
a PostgreSQL server extension

project page:
http://oracle-fdw.projects.postgresql.org/

http://oracle-fdw.projects.postgresql.org/

Foreign Data Wrapper concepts

PostgreSQL object

Foreign Data Wrapper
Foreign Server

User Mapping

Foreign Table

corresponds to

Oracle DB software
Oracle instance
Oracle credentials

Oracle table/view

A simple example

pgdb=# CREATE EXTENSION oracle fdw;
pgdb=# CREATE SERVER oradb FOREIGN DATA WRAPPER
oracle fdw OPTIONS
(dbserver '//dbserver.mydomain.com/ORADB') ;
pgdb=# GRANT USAGE ON FOREIGN SERVER oradb
TO pguser;
pgdb=# \connect pgdb pguser
pgdb=> CREATE USER MAPPING FOR pguser
SERVER oradb
OPTIONS (user 'orauser',6K password 'orapwd');
pgdb=> CREATE FOREIGN TABLE people (

id integer NOT NULL,
name varchar (30),
birthday date NOT NULL

) SERVER oradb OPTIONS (table 'PEOPLE') ;

Data migration with oracle fdw

BEGIN;

CREATE TABLE loc people AS
(SELECT * FROM people) ;

ALTER TABLE loc people
ADD CONSTRAINT people pkey
PRIMARY KEY (id) ;

DROP FOREIGN TABLE people;

ALTER TABLE loc people
RENAME TO people;

COMMIT ;

Special Features of oracle fdw

« Automatic encoding management
» Data type conversion
« WHERE clause push down

* Only fetch required columns
« EXPLAIN support

New in 9.2:
» Statistics on foreign tables

« No re-check of pushed down WHERE clauses

Feature: Automatic encoding
management

C'est trA’s important!

Automatically sets the Oracle client encoding to
the value of the PostgreSQL server encoding.

Override with nls lang option on the FDW
object (useful for SQL. ASCII).

Feature: Data type conversion

This could be done with views and casts, but it is
more convenient if the FDW supports it.

* Allows conversion of matching data types (e.g.
NUMBER — numeric/integer/double precision/
boolean)

* All except binary data can be converted to
textual types

* Does not guarantee that all values can be

converted (encoding problems, string length,
integer maximum, ...)

Feature: WHERE pushdown,
column elimination

EXPLAIN SELECT name FROM people WHERE id=2;

QUERY PLAN
Foreign Scan on people (cost=10000.00..10000.00
rows=1l width=75)
Filter: (id = 2)
Oracle query: SELECT
/*522d754ad26bc932e0a8984763d2b374*/
"ID", "NAME" FROM PEOPLE WHERE ("ID" = 2)
(3 rows)

Feature: EXPLAIN support

« EXPLAIN shows the remote query

« EXPLAIN VERBOSE shows the remote query
plan (requires SELECT privilege on Vv$SQL and
V$SSQL PLAN)

Feature: EXPLAIN support

EXPLAIN VERBOSE SELECT name FROM people WHERE id=2;

QUERY PLAN
Foreign Scan on pguser.people
(cost=10000.00..10000.00 rows=1l width=75)
Output: name
Filter: (people.id = 2)
Oracle query:
SELECT /*522d754ad26bc932e0a8984763d2b374*/

"ID", "NAME" FROM PEOPLE WHERE ("ID" = 2)
Oracle plan: SELECT STATEMENT
Oracle plan: TABLE ACCESS BY INDEX ROWID PEOPLE
Oracle plan: INDEX UNIQUE SCAN PEOPLE PKEY

(condition "ID"=2)
(7 rows)

(Mis-)Feature: Estimates in 9.1

EXPLAIN ANALYZE SELECT id FROM people
WHERE name LIKE 'L%'
AND birthday < now() - '80 years'::interval;

QUERY PLAN

Foreign Scan on people
(cost=10000.00..10000.00 rows=4877 width=4)
(actual time=1.179..102.861 rows=673 loops=1)
Filter: (((name) ::text ~~ 'L%'::text) AND
(birthday < (now() - '80 years'::interval)))
Oracle query:
SELECT /*90af296c03d5552a300£876e9108904d*/
"ID", "NAME", "BIRTHDAY" FROM PEOPLE
WHERE ("NAME" LIKE 'L%' ESCAPE '\')
Total runtime: 103.690 ms

Feature: ANALYZE in 9.2

ANALYZE collects statistics for remote tables

Must be called for each foreign table explicitly
Good estimates even without asking Oracle
Performs a full table scan on Oracle

Feature: Estimates in 9.2

EXPLAIN ANALYZE SELECT id FROM people
WHERE name LIKE 'L%'
AND birthday < now() - '80 years'::interval;

QUERY PLAN
Foreign Scan on people
(cost=10000.00..10000.00 rows=412 width=4)
(actual time=1.556..116.143 rows=673 loops=1)
Filter:
(birthday < (now() - '80 years'::interval))
Rows Removed by Filter: 4015
Oracle query:
SELECT /*90af296c03d5552a300£876e9108904d*/
"ID", "NAME", "BIRTHDAY" FROM PEOPLE
WHERE ("NAME" LIKE 'L%' ESCAPE '\')
Total runtime: 116.775 ms

Problems

« Still beta (awaiting your feedback!)
e NCLOB and other rare data types not supported

 No Oracle support for some rare server
encodings (non-ASCI| characters become '?’)

 Bad Oracle cost estimates
(disabled by default)

* I[ncompatible LDAP libraries
(build PostgreSQL --without-1dap)

Usage for migration

» Coexist: integrate with existing Oracle
databases

* Migrate data: extract, transform, load (ETL)

Coexist with Oracle

Usually one cannot/does not want to migrate all
Oracle databases at once.

Then how can you migrate an Oracle database
with database links?

oracle fdw can save the day!
This can also be a problem for new applications:

“We cannot use PostgreSQL because we have to
access this certain Oracle table.”

Migration: extract data from Oracle

Oracle deliberately does not provide tools for that
(SQL*Plus does not work well).
You can use third-party tools or write your own.

oracle fdw does it for you!

Can also be used to extract data from Oracle to

text files for other purposes:
pgdb=> \copy (SELECT * FROM people)
TO 'people.csv' (FORMAT 'csv')

Migration: transform data

Often data need to be converted during migration:
» different string encoding:
oracle_fdw does this efficiently
» different data types:
oracle fdw does this efficiently
» “data cleansing” or mapping to other values:
can sometimes be implemented by joins on the
PostgreSQL or Oracle side (views).

oracle fdw can perform simple transformations.

Migration: load into PostgreSQL

Usually done with COPY FROM SQL statement.

This is the easiest part.

oracle fdw is slower than COPY, but can avoid the
need for an operating system file as intermediary
data store.

Migration: advantages of oracle fdw

For simple migration scenarios, oracle fdw is a
fast and simple migration tool:

all written in C

all can be done in one SQL statement

Oracle prefetching for fewer client-server round
trips

no intermediary files

binary values are transferred binary, no
conversion necessary

support for “legacy” data: Oracle 8, deprecated
types LONG and LONG RAW

Migration: limits of oracle fdw

oracle fdw will not help with table/index/function
definitions.

ora2pg (http://ora2pg.darold.net/config.html) can
generate foreign table definitions for oracle_fdw.

An alternative is a simple “schema converter”:
PostgreSQL function that uses foreign tables for
USER TABLES and USER TAB COLUMNS to
create forelgn tables for everythlng in an Oracle
schema.

http://ora2pg.darold.net/config.html

What the future could bring

* “join pushdown” of joins between Oracle tables
in the same Oracle database
» writeable foreign tables

All this needs added support in core PostgreSQL.

Questions? Suggestions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

