

Use Oracle from PostgreSQL
oracle_fdw in migration scenarios

Laurenz Albe <laurenz.albe@wien.gv.at>

2012-10-04

What is oracle_fdw?
● it allows read access to Oracle tables as if they

were PostgreSQL tables
● an SQL/MED Foreign Data Wrapper for Oracle
● a PostgreSQL server extension
● project page:

http://oracle-fdw.projects.postgresql.org/

http://oracle-fdw.projects.postgresql.org/

Foreign Data Wrapper concepts

PostgreSQL object

Foreign Data Wrapper
Foreign Server
User Mapping
Foreign Table

corresponds to

Oracle DB software
Oracle instance
Oracle credentials
Oracle table/view

A simple example
pgdb=# CREATE EXTENSION oracle_fdw;
pgdb=# CREATE SERVER oradb FOREIGN DATA WRAPPER
 oracle_fdw OPTIONS
 (dbserver '//dbserver.mydomain.com/ORADB');
pgdb=# GRANT USAGE ON FOREIGN SERVER oradb
 TO pguser;
pgdb=# \connect pgdb pguser
pgdb=> CREATE USER MAPPING FOR pguser
 SERVER oradb
 OPTIONS (user 'orauser', password 'orapwd');
pgdb=> CREATE FOREIGN TABLE people (
 id integer NOT NULL,
 name varchar(30),
 birthday date NOT NULL
) SERVER oradb OPTIONS (table 'PEOPLE');

Data migration with oracle_fdw

BEGIN;
CREATE TABLE loc_people AS
 (SELECT * FROM people);
ALTER TABLE loc_people
 ADD CONSTRAINT people_pkey
 PRIMARY KEY(id);
DROP FOREIGN TABLE people;
ALTER TABLE loc_people
 RENAME TO people;
COMMIT;

Special Features of oracle_fdw
● Automatic encoding management
● Data type conversion
● WHERE clause push down
● Only fetch required columns
● EXPLAIN support

New in 9.2:
● Statistics on foreign tables
● No re-check of pushed down WHERE clauses

Feature: Automatic encoding
management

C'est trÃ¨s important!

Automatically sets the Oracle client encoding to
the value of the PostgreSQL server encoding.

Override with nls_lang option on the FDW
object (useful for SQL_ASCII).

Feature: Data type conversion

This could be done with views and casts, but it is
more convenient if the FDW supports it.

● Allows conversion of matching data types (e.g.
NUMBER → numeric/integer/double precision/
boolean)

● All except binary data can be converted to
textual types

● Does not guarantee that all values can be
converted (encoding problems, string length,
integer maximum, …)

Feature: WHERE pushdown,
column elimination

EXPLAIN SELECT name FROM people WHERE id=2;

QUERY PLAN

 Foreign Scan on people (cost=10000.00..10000.00
 rows=1 width=75)
 Filter: (id = 2)
 Oracle query: SELECT
 /*522d754ad26bc932e0a8984763d2b374*/
 "ID", "NAME" FROM PEOPLE WHERE ("ID" = 2)
(3 rows)

Feature: EXPLAIN support

● EXPLAIN shows the remote query
● EXPLAIN VERBOSE shows the remote query

plan (requires SELECT privilege on V$SQL and
V$SQL_PLAN)

Feature: EXPLAIN support
EXPLAIN VERBOSE SELECT name FROM people WHERE id=2;
QUERY PLAN

 Foreign Scan on pguser.people
 (cost=10000.00..10000.00 rows=1 width=75)
 Output: name
 Filter: (people.id = 2)
 Oracle query:
 SELECT /*522d754ad26bc932e0a8984763d2b374*/
 "ID", "NAME" FROM PEOPLE WHERE ("ID" = 2)
 Oracle plan: SELECT STATEMENT
 Oracle plan: TABLE ACCESS BY INDEX ROWID PEOPLE
 Oracle plan: INDEX UNIQUE SCAN PEOPLE_PKEY
 (condition "ID"=2)
(7 rows)

(Mis-)Feature: Estimates in 9.1
EXPLAIN ANALYZE SELECT id FROM people
 WHERE name LIKE 'L%'
 AND birthday < now() - '80 years'::interval;
QUERY PLAN

Foreign Scan on people
 (cost=10000.00..10000.00 rows=4877 width=4)
 (actual time=1.179..102.861 rows=673 loops=1)
 Filter: (((name)::text ~~ 'L%'::text) AND
 (birthday < (now() - '80 years'::interval)))
 Oracle query:
 SELECT /*90af296c03d5552a300f876e9108904d*/
 "ID", "NAME", "BIRTHDAY" FROM PEOPLE
 WHERE ("NAME" LIKE 'L%' ESCAPE '\')
 Total runtime: 103.690 ms

Feature: ANALYZE in 9.2

● ANALYZE collects statistics for remote tables
● Must be called for each foreign table explicitly
● Good estimates even without asking Oracle
● Performs a full table scan on Oracle

Feature: Estimates in 9.2
EXPLAIN ANALYZE SELECT id FROM people
 WHERE name LIKE 'L%'
 AND birthday < now() - '80 years'::interval;
QUERY PLAN

Foreign Scan on people
 (cost=10000.00..10000.00 rows=412 width=4)
 (actual time=1.556..116.143 rows=673 loops=1)
 Filter:
 (birthday < (now() - '80 years'::interval))
 Rows Removed by Filter: 4015
 Oracle query:
 SELECT /*90af296c03d5552a300f876e9108904d*/
 "ID", "NAME", "BIRTHDAY" FROM PEOPLE
 WHERE ("NAME" LIKE 'L%' ESCAPE '\')
 Total runtime: 116.775 ms

Problems
● Still beta (awaiting your feedback!)
● NCLOB and other rare data types not supported
● No Oracle support for some rare server

encodings (non-ASCII characters become '?')
● Bad Oracle cost estimates

(disabled by default)
● Incompatible LDAP libraries

(build PostgreSQL --without-ldap)

Usage for migration
● Coexist: integrate with existing Oracle

databases
● Migrate data: extract, transform, load (ETL)

Coexist with Oracle

Usually one cannot/does not want to migrate all
Oracle databases at once.
Then how can you migrate an Oracle database
with database links?

oracle_fdw can save the day!

This can also be a problem for new applications:
“We cannot use PostgreSQL because we have to
access this certain Oracle table.”

Migration: extract data from Oracle

Oracle deliberately does not provide tools for that
(SQL*Plus does not work well).
You can use third-party tools or write your own.

oracle_fdw does it for you!

Can also be used to extract data from Oracle to
text files for other purposes:
pgdb=> \copy (SELECT * FROM people)
 TO 'people.csv' (FORMAT 'csv')

Migration: transform data

Often data need to be converted during migration:
● different string encoding:

oracle_fdw does this efficiently
● different data types:

oracle_fdw does this efficiently
● “data cleansing” or mapping to other values:

can sometimes be implemented by joins on the
PostgreSQL or Oracle side (views).

oracle_fdw can perform simple transformations.

Migration: load into PostgreSQL

Usually done with COPY FROM SQL statement.

This is the easiest part.

oracle_fdw is slower than COPY, but can avoid the
need for an operating system file as intermediary
data store.

Migration: advantages of oracle_fdw

For simple migration scenarios, oracle_fdw is a
fast and simple migration tool:
● all written in C
● all can be done in one SQL statement
● Oracle prefetching for fewer client-server round

trips
● no intermediary files
● binary values are transferred binary, no

conversion necessary
● support for “legacy” data: Oracle 8, deprecated

types LONG and LONG RAW

Migration: limits of oracle_fdw

oracle_fdw will not help with table/index/function
definitions.
ora2pg (http://ora2pg.darold.net/config.html) can
generate foreign table definitions for oracle_fdw.

An alternative is a simple “schema converter”:
PostgreSQL function that uses foreign tables for
USER_TABLES and USER_TAB_COLUMNS to
create foreign tables for everything in an Oracle
schema.

http://ora2pg.darold.net/config.html

What the future could bring

● “join pushdown” of joins between Oracle tables
in the same Oracle database

● writeable foreign tables

All this needs added support in core PostgreSQL.

Questions? Suggestions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

