Python DataScience frameworks integration
with PostgreSQL

@o_courtin

PostgreSQL Session#9 - 11/2017

Jupyter PYTHRCH

Deep Learning with PyTorch

4X

NumPy
DataFrame

Pg DataTypes
WKT Raster

)-é' ﬂ h-ttps:.,:‘,;’.tfy.jupyter.arg c d. Sear::_h

: Jupyter Welcome to Python (unsaved changes) A o[
File Edit View Insert Cell Kemel Widgets Help ;_Trusted | | Python 3 O

B+ Bﬁ:fﬁl:iﬁ "l':dr)IRun:. C | Markdown :IEI
In [1]:'%matp10t1ib notebook
import pandas as pd
import numpy as np
import matplotlib

from matplotlib import pyplot as plt
import seaborn as sns

ts = pd.Series(np.random. randn{1808), index:pd.date_range('1/1/2999', periods=1608))
ts = ts.cumsum()
df = pd.DataFrame(np.random.randn({1808, 4), index=ts.index,

columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
df.plot(); plt.legend(loc='best')

e @ 1y sa.s

<« ¢ @ (O @ hteps://opendata,paris.fr/explore/dataset/place-de-la-nation-points-de-mesure-flux/map/?locat
_/ y : D [; I [\ MAIRIE DE PARIS 3
@ Les données L'API La licence La démarche Cartographe
66 - Place de la Nation - Points de mesure flux
enregist S
Aucun filire actif. @ Informations B8 Tableau @ Carte Lt Analyse & Export 22 AP
Filtres g g
|ra o (7 A,
{Laf = W o
! o E &7
e Q & | % ! \ =
turnstil 50 td 9 =
urnstile et o N
area 16 | | :
=) id
classes 2 =5) s
i RER a nom
ped 47 = Cercle interieur - niveau Fabre '%
vehicle 17 RE 5 diglantng L @ L ®
i “"’q = metrics - d %,
bike 2 Py Eo _El\-a [{"id™ "direction_1", "name”: "Sens 5 ufz.
5 ‘["‘94 o Boulevard ¥ inverse™}, {"id™ "direction_2", "name™: Avenue de Taillebourg E |
classes 3 ;ne ,f "Sens de circulation'}] 9
! classes
bike 21 20
1 type

ped

turnstile
classes 2
vehicle

5
| % 5
=
classes 3 =
S bike e
=, L/ Ren -
w® . " . 4 A [7;
. 1 s o ; ‘!?
[= . b .
: z ulevard Diderat 48
£
¢ -
04 %??.q
’% Avenue al = # b
9 Place gela nat! | Avenue du Trone

Lycée général A du Bel-Air
et
techRn]agique 8
: :
ago Nation e

I w Avaniin i Bal-hie

l30m

L blaze / odo
<> Code Issues 171 Pull requests 21 Projects 0 Insights

Branch:master » | odo / docs / source / perf.rst

B diakata Fix typo In docs

3 contributors E E E

176 lines (138 sloc) @ 5.81 KB

Loading CSVs into SQL Databases

& Watch 72 9 Star 707 ¥ Fork | 115

Raw

Findfile = Copy path

cebedss on Jul 25

Blame History = &

When faced with the problem of loading a larger-than-RAM CSV into a SQL database from within Python, many people will

jump to pandas. The workflow goes something like this:

>>> import sglalchemy as sa
==> import pandas as pd
>>> gon = sa.create engine('postgresgl://localhost/db')
==> chunks = pd.read csv('filename.csv', chunksize=1806000)
=>> for chunk in chunks:
chunk.to_sql({name='table', if exist="append', con=con)

There is an unnecessary and very expensive amount of data conversion going on here. First we convert our CSV into an
iterator of DataFrames, then those DataFrames are converted into Python data structures compatible with SQLAIchemy.
Those Python objects then need to be serialized in a way that's compatible with the database they are being sent to. Before
you know it, more time is spent converting data and serializing Python data structures than on reading data from disk.

https://github.com/blaze/odo/

In [1]: pg uri = 'postgresqgl://0:xxx@127.0.0.1:5432/db’

In [2]: from odo import odo
odo('/tmp/iot.csv', pg uri + '::iot')

/usr/local/lib/python3.5/dist-packages/odo/backends/pandas.py:94: FutureWarning: pandas.tslib
is deprecated and will be removed in a future version.
You can access NaTType as type(pandas.NaT)

@convert.register((pd.Timestamp, pd.Timedelta), (pd.tslib.NaTType, type(None)))

OQut[2]: Table('iot', MetaData(bind=Engine(postgresql://o:***@127.0.0.1:5432/db)), Column('Metric', Tex
t(), table=<iot>), Column('Value', FLOAT(), table=<iot>, nullable=False), Column('Value type',
Text(), table=<iot>), Column('Host', BigInteger(), table=<iot>, nullable=False), Column('Class
', Text(), table=<iot>), Column('Timestamp', DateTime(), table=<iot>), Column('data direction
1', Text(), table=<iot>), Column('data direction 2', Text(), table=<iot>), Column('data measur
e namel', Text(), table=<iot>), Column('data measure name2', Text(), table=<iot>), schema=None

)

In [3]: !psql -c "\d iot" db
Table "public.iot"

Column | Type | Modifiers
____________________ i T I il rai e
Metric | text |
Value | double precision | not null
Value type | text |
Host | bigint | not null
Class | text |
Timestamp | timestamp without time zone |
data direction 1 | text |
data direction 2 | text |
data measure namel | text |
data measure name2 | text |

In [4]: !psql -c "SELECT count(*) \
FROM iot" db

2198006
(1 row)

In [5]: from sqlalchemy import create engine
import pandas as pd

pg = create engine(pg uri)

In [6]: df = pd.read sql query("""
SELECT "Value" v,
"Timestamp" ts

FROM iot

ORDER BY ts
"t opg)
print (df)

Vv ts

0 24.0 2016-10-11 17:10:00
1 137.0 2016-10-11 17:10:00
2 372.0 2016-10-11 17:10:00
3 30.0 2016-10-11 17:10:00
4 251.0 2016-10-11 17:10:00
5 284.0 2016-10-11 17:10:00
6 46.0 2016-10-11 17:10:00

In [7]: np = df.values
print(np)

[[24.0 Timestamp('2016-10-11 17:10:00")]
[137.0 Timestamp('2016-10-11 17:10:00")]
[372.0 Timestamp('2016-10-11 17:10:00")]

[3.0 Timestamp('2017-03-07 11:40:00")]
[0.0 Timestamp('2017-03-07 11:40:00")]
[0.0 Timestamp('2017-03-07 11:40:00")]]

In [8]:

a df = pd.DataFrame({'v':np[:,0], 'ts':

print (a df)

2016-10-11
2016-10-11
2016-10-11
2016-10-11
2016-10-11
2016-10-11
2016-10-11

ook WwNREOoO

17:
17:
17:
17:
17:
17:
17:

10:
10:
10:
10:
10:
10:
10:

ts
00
00
00
00
00
00
00

24
137
372

30
251
284

46

np[:,1]})

In [9]: dimport matplotlib.pyplot as plt

plt.figure(figsize=(15, 5))
plt‘plot(np[:il]l np[::e])
plt.show()

1400 -

1200 1

1000

800 -

600 -

400 A

200 1

2016-11 2016-12 2017-01 2017-02 2017-03

Features Business Explore Marketplace Pricing ory Searc Sign in ' Sign up

! quantopian / warp_prism @ Watch 32 sStar 5 YFork 2

¢» Code Issues 0 Pull requests 1 Projecis 0 Insights

warp_prism
Quickly move data from postgres to numpy or pandas.

API

to_arrays(query, *, bind=None)

Run the guery returning a the results as np.ndarrays.

to_dataframe(query, *, bind=None, null_values=None)

Run the guery returning a the results as a pd.DataFrame.

https://github.com/quantopian/warp_prism

In [10]:

In [11]:

Ipsql -c 'CREATE TABLE foo AS (SELECT "Value" v, "Timestamp" ts FROM iot)' db
SELECT 2198006

import warp prism as wp
from odo import resource

np = wp.to arrays(resource(pg uri + '::foo'))
print(np)
{‘v': (array([7., 8., 13., ..., 88., 43., 13.1), array([True, True, True, ..., Tru

e, True, True], dtype=bool)), 'ts': (array(['2016-11-22T07:20:00.000000', '2016-11-22T07:20:
00.000000"',

'2016-11-22T06:40:00.000000', ..., '2017-01-27T00:20:00.000000',
'2017-01-27T00:20:00.000000', '2017-01-27T00:20:00.000000'], dtype='datetime64[us]'), a
rray([True, True, True, ..., True, True, True], dtype=bool))}

In [12]: import warp prism as wp
from odo import resource

df = wp.to dataframe(resource(pg uri + '::fo0'))
print(df)
'} ts
0) 7.0 2016-11-22 07:20:00
1 8.0 2016-11-22 07:20:00
2 13.0 2016-11-22 06:40:00
3 10.0 2016-11-22 07:20:00
4 16.0 2016-11-22 06:40:00
5 59.0 2016-11-22 06:40:00
6 25.0 2016-11-22 06:40:00

CREATE OR REPLACE FUNCTION signal correlate(a float[], b float[])
RETURNS numeric
AS $3

from scipy import signal
import numpy as np

return np.argmax(signal.correlate(a, b)) - len(a)

$$ LANGUAGE plpythonu;

Still TODO

warp_prism:
add plain SQL query support (and VIEW handling)

odo:
schema handling in uri

release to package: https://github.com/blaze/odo/pull/443

asyncpg / asyncio:
Evaluate if/fhow could be use in this context

| Ben Hamner @ @benhamner - Nov 12
* Easy parts of applying machine learning:
Tit()
predict()

Hard parts:

.clean()

transform()

.get_data()
Jframe_problem()

.debug()

.handle nonstationarities()
.handle _missing_inputs()

Q 35 M2 Q2

df = pd.read sql query("""
WITH a AS (SELECT "Value" v, "Timestamp" ts, "Host" host FROM iot)

SELECT avg(v), ts

FROM a

WHERE host IN ('7062', '6196', '7118')
GROUP BY ts

ORDER BY ts

II1FIIjl pg}

data = df.values

import matplotlib.pyplot as plt

plt.figure(figsize=(15, 5))
plt.plot(datal:,1], data[:,0])
plt.show()

200 4

150 4

100 4

2016-11 2016-12 2017-01 2017-02 2017-03

when = pd , read_sql_query{ TR
WITH a AS (

SELECT "Timestamp" ts, "Value" v, "Host" host
FROM iot

}l

b AS {
SELECT ts, v, host,
sum(v) OVER (PARTITION by host ORDER BY ts
ROWS BETWEEN CURRENT ROW AND 20 FOLLOWING) as cv
FROM a
WHERE host = '7062'
ORDER BY ts
)

SELECT ts, v, host
FROM b

WHERE cv = @

ORDER BY ts

LIMIT 1

o IfI pg)

print(when.values)

[[Timestamp('2017-01-01 22:30:00') 0.0 7062]]

import numpy as np
import numpy.fft as fft

df = pd.read sql query("""

WITH a AS (

SELECT "Timestamp" ts, "Value" v, "Host" host
FROM iot

WHERE "Timestamp" < '31/12/2016'

SELECT avg(v), ts

FROM a

WHERE host IN ('7062', '6196', '7118')
GROUP BY ts

ORDER BY ts

I[IFII' pg)

data = df.values

dft = np.abs(fft.rfft(datal:,0]))
N = round(len{dft)/2)

plt.figure(figsize=(15, 5))
plt.plot(dft[:N])
plt.show()

1750000 4
1500000 1
1250000 1
1000000 4
750000

500000 4

250000 4
o] L-Lnﬁ—i-

0 1000 2000

3000

4000

5000

Quant

£ facebook / prophet ® Watch 226 s Star 4,114 YFork 728

Prophet: Automatic Forecasting Procedure

Prophet is a procedure for forecasting time series data. It is based on an additive model where non-linear trends are fit with
yearly and weekly seasonality, plus holidays. It works best with daily periodicity data with at least one year of historical data.
Prophet is robust to missing data, shifts in the trend, and large outliers.

Prophet is open source sofiware released by Facebook's Core Data Science team. It is available for download on CRAN and
PyPL.

https://github.com/facebook/prophet

How Prophet works

At its core, the Prophet procedure is an additive regression model with four main

componentE:

® A piecewise linear or logistic growth curve trend. Prophet automatically detects
changes in trends by selecting changepoints from the data.

e A yearly seasonal component modeled using Fourier series.

e A weekly seasonal component using dummy variables.

® A user-provided list of important holidays.

https://research.fb.com/prophet-forecasting-at-scale/

import pandas as pd

df = pd.DataFrame({'y': data[:,0], 'ds': data[:,1]1})

from fbprophet import Prophet

m = Prophet()

m.add seasonality(name='monthly', period=30, fourier order=5)
m.fit(df)

future = m.make future dataframe(periods=30, freq="H'")
forecast = m.predict(future)]

m.plot components(forecast)

monthly

D
2016-10-15 2016-10-29 2016-11-12 2016-11-26 2016-12-10 2016-12-24
ds
01/01 01/06 01/11 01/16 01721 01/26 01/31

ds

00:00:00

04:00:00

08:00:00

12:00:00

16:00-00

20:00:00

00:00:00

Sunday

Monday

Tuesday

Wednesday
Day of week

Thursday

Friday

Saturday

2016-10-15

200 1

150 4

50

2016-12-24

2016-10-29

2016-11-26 2016-12-10

2016-11-12

To go further: RNN LSTM

http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-for-Time-Series-Prediction

http://www.deeplearningbook.org/contents/rnn.nhtml

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

M&

Forecast. Compete. Excel.

ABOUT RULES DATES PRIZES EXPECTATIONS RESOURCES + REGISTE

M* Competition

An cpen forecasting competition for indiwiduals, teams and institutions to participate.

https://www.m4.unic.ac.cy/

NLP

spaCy

Industrial-Strength
Natural Language
Processing

IN PYTHON

Fastest in the world Get things done

spaCy excels at large-scale information

i y, ‘ge ; spaCy is designed to help you do real work
extraction tasks. It's written from the ground)
cxblhicmms bl mioeyammaged S ghon — to build real products, or gather real

P d 9 . insights. The library respects your time, and
Independent research has confirmed that % : L -
st 16 TP Tt s I Ine Word. 16 tries to avoid wasting it. It's easy to install,

REeLE : il and its AP! is simple and productive. We like
application needs to process entire web] i

5 j to think of spaCy as the Ruby on Rails of

dumps, spaCy is the library you want to be .
i - Natural Language Processing.

https://spacy.io/

FACTS & FIGURES GET STARTED

Deep learning

spaCy is the best way to prepare text for
deep learning. It interoperates seamlessly
with TensorFlow, PyTorch, scikit-learn,
Gensim and the rest of Python's awesome
Al ecosystem. With spaCy, you can easily
construct linguistically sophisticated
statistical models for a variety of NLP
problems.

READ MORE

In [1]:

In [2]:

from sqlalchemy import create engine
import pandas as pd

pg uri = 'postgresql://o:xxx@127.0.0.1:5432/db’
pg = create_engine(pg_uri)

df = pd.read sql query("""
SELECT
'The original question: Can machines think ? I believe to be too meaningless to deserve discussion.'
-- Turing Quote

nn III pg)
print(df.values[0][0])

The original question: Can machines think ? I believe to be too meaningless to deserve discussion.

import spacy
from spacy import displacy

nlp = spacy.load('en')
doc = nlp(df.values[@][0])
displacy.serve(doc, style='dep')

acl

det alix
amod nsuby
The original guestion: Can machines think ?
DT JJ NN MD NNS VB
XComp
xcomp acomp
m ax advmog m m
believe to be too meaningless fo deserve discussion.

PRP VBP TO VB RB JJ TO VB NN

Machine Comprehension Textual Entailment Semantic Role Labeling Coreference Resolution

Machine Comprehension

Machine Comprehension (MC) answers natural language questions by selecting an answer span within an
evidence text. The AllenNLP toolkit provides the following MC visualization, which can be used for any MC
model in AllenNLP. This page demonstrates a reimplementation of BIDAF (Seo et al, 2017), or Bi-Directional
Attention Flow, a widely used MC baseline that achieved state-of-the-art accuracies on the SQuAD dataset
(Wikipedia sentences| in early 2017,

Enter textor | Reboticsisan interdi~

Passage

Rebetics is an interdisciplinary branch of engineering and science that includes mechanical engineering, electrical
engineering, computer science, and others. Robotics deals with the design, construction, operation, and use of robots,
as well as computer systems for their control, sensory feedback, and information processing. These technologies are
used to develop machines that can substitute for humans. Robots can be used in any situation and for any purpose, but
today many are used in dangerous environments (including bomb detection and de-activation), manufacturing

Question

What do robots that resemble humans attempt to do?

Allenl\| P

Answer

replicate walking, lifting, speech, cognition

Passagze Context

Robotics is an interdisciplinary branch of engineering and science that includes mechanical engineering,
electrical engineering, computer science, and others. Robotics deals with the design, construction,
operation, and use of robots, as well as computer systems for their control, sensory feedback, and
information processing. These technologies are used to develop machines that can substitute for
humans. Robots can be used in any situation and for any purpose, but today many are used in dangerous
environments (including bomb detection and de-activation}, manufacturing processes, or where humans
cannot survive. Robots can take on any form but some are made to resemble humans in appearance. This
is said to help in the acceptance of a robot in certain replicative behaviors usually performed by people.

Such robots attempt to FCITE ERUETEL ML T-8-E A =L EE T, and basically anything a human

can do.

http://demo.allennlp.org/machine-comprehension

Vision

WJHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, EASY GIS LOOKLP
GIMME A FEuW HOURS.

. .« AND CHECK JHETHER
THE PHOTD IS OF A BIRD.

I NEED A RESEARCH

\ TEAM AND FIVE YEARS.

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

WKB Raster

Read WKB rasters to Numpy arrays.

Docs

wkb_raster.read_wkb_raster({wkb)

Parameters

« wkb - file-like object. Binary raster in WKB format.
With WKB from PostCIS Raster. Use ST_AsBinary to return the WKB representation of the raster.

SELECT ST_AsBinary(rast) FROM rasters;

Wrap the binary buffer in ¢StringI0.StringIO :

from ¢StringI0 import StringIO
from wkb_raster import read_wkb_raster

raster = read_wkb_raster(StringI0(buf))
raster('bands'] [@]

https://github.com/nathancahill/wkb-raster

I-J-
i
L]

] 44 L1
- 11 W e
SEAEl N -
PR -
e L L L LT — L L

LLL

T

Rosenblatt, The Perceptron (1958)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=repl&type=pdf

https://en.wikipedia.org/wiki/Overfitting

= | Le"'ni’ef 5 | sisnxac

AISWer.

!
il LI L

ITLE I

>3
i

i
4

&
ﬂ:_'l. -
Sy
-y
‘.'1:!
34

=
A
a2
>

T T l""7"1’_ ayer-5

Layer-3 input
Layer-1

LeCun — LeNet 5 (1998)
http://yann.lecun.com/exdb/lenet/

o l-li-i-'-i-l-l-l'-i::
']

Convolution animations

No padding, no strides Arbitrary padding, no strides ~ Half padding, no strides Full padding, no strides

No padding, no strides, Arbitrary padding, no Half padding, no strides, Full padding, no strides,
transposed strides, transposed transposed transposed

https://github.com/vdumoulin/conv_arithmetic

i28 61 B4 2

¥
¥
o
300} ‘

ﬁ
=2 =3 1
=T L Ge=TL

=p cONV 3x3, RelU
= cOpy and crop

§ max pool 2x2

up-conv 2x2
m= COMY 1x1

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

.{\azavea

SOFTWARE DEVELOPMENT

eep Learning for Semantic
Segmentation of Aerial
Imagery

https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/

RGB Ground Truth Prediction

= impervious
Bl Auiding

Bl Low vegelation
B Tree

=l Cur

B Cutle

Overall Impervious Building Low Vegetation Tree Car Clutter
Validation 85.8 89.1 91.8 82.0 833 | 93.7 | 83.2

Test 89.2 91.4 96.1 86.1 86.6 93.3 46.8

1. # The number of output labels
2. nb labels = 6

4. The dimensions of the input images
5. nb rows = 256
6. nb_cols = 256

8. # A ResNet model with weights from training on ImageNet. This will
9. # be adapted via graph surgery into an FCN.

10. base_model = ResNet50(

11. include top=False, weights='imagenet', input tensor=input tensor)
12,

13, # Get final 32x32, 16x16, and 8x8 layers in the original

14. # ResNet by that layers's name.

15. x32 = base model.get layer('final 32').output

16, x16 = base _model.get layer('final 16').output

17. x8 = base model.get layer('final xB').output

18.

19. # Compress each skip connection so it has nb labels channels.

20. €32 = Convolution2D(nb labels, (1, 1))(x32)

21. clé = Convolution2D(nb labels, (1, 1))(x16)

22. ¢8 = Convolution2D(nb labels, (1, 1))(x8B)

23.

21.
24.
28,
26.
217.
28.
29.
30.
1.
32.
33.
4.
5.
36.
37.
8.
35.
40.
4l.
42.
43.

LR

Resize each compressed skip connection using bilinear interpolation.
This operation isn't built into Keras, so we use a Lambdalayer
which allows calling a Tensorflow operation.
def resize bilinear(images):
return tf.image.resize bilinear(images, [nb_rows, nb cols])

r32 = Lambda(resize bilinear)(c32)
rl6 = Lambda(resize bilinear)(cl6)
r8 = Lambda(resize bilinear)(c8)

Merge the three layers together using summation.
m= Add()([r32, rl6, rB8])

Add softmax layer to get probabilities as output. We need to reshape
and then un-reshape because Keras expects input to softmax to

be 2D.

x = Reshape((nb rows * nb cols, nb labels))(m)

x = Activation('softmax')(x)

x = Reshape((nb rows, nb cols, nb _labels))(x)

fen_model = Model (input=input tensor, output=x)

Q Competitions Datasets Kernels Discussion Jobs s

$100,000 - 419 teams - 8 months ago

Dstl Satellite Imagery Feature Detection
S tl Can you train an eye in the sky?

Owverview Data

Overview

Description
Evaluation
Prizes

Data Processing
Tutorial

Timeline

Discussion Leaderboard Rules

The proliferation of satellite imagery has given us a radically improved understanding of our planet. It
has enabled us to better achieve everything from mobilizing resources during disasters to monitoring
effects of global warming. What is often taken for granted is that advancements such as these have
relied on labeling features of significance like building footprints and roadways fully by hand or
through imperfect semi-automated methods.

As these large, complex datasets continue to increase exponentially in number, the Defence Science
and Technology Laboratory (Dstl) is seeking novel solutions to alleviate the burden on their image
analysts. In this competition, Kagglers are challenged to accurately classify features in overhead
imagery. Automating feature labeling will not only help Dstl make smart decisions more quickly around
the defense and security of the UK, but also bring innovation to computer vision methodologies applied

to satellite imagery.

Conclusions

= = o & =

— . e —

coonoa

<< gL
b

TLL<C I
alala)-{als

@data_pink

www.datapink.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

