Increased 1/O
Observability with
pg_stat_1io

Postgres Performance Observability Sources and
Analysis Techniques

o> "
N\
* Open source Postgres hacking:

executor, planner, storage, and \
statistics sub-systems

* |/O Benchmarking and Linux
kernel storage performance tuning

Melanie

* Recently worked on prefetching
PI a g eman for direct I/0O and 1/O statistics

https://github.com/
melanieplageman

Transactio High transactions per
nal second (TPS)

Workload
/O
Performan

ce Goals Consistent low latency

Working set is not in

Common memory

¥iO,

Performan

ce Issue

causes Autovacuum

bottlenecked on |I/O

Shared buffers

Postgres
/O
Tuning
Targets

Background writer

Autovacuum

Postgres |/O Statistics Views

pg_stat_database
* hits, reads

pg_statio_all_tables
* hits, reads, read time, write time

pg_stat_bgwriter
* backend writes, backend fsyncs

pg_stat_statements
 shared buffer hits, reads, writes, read time, write time
e local buffer hits, reads, writes, read time, write time

Postgres |/O Statistics Views' Gaps

e Writes = flushes + extends
* Reads and writes combined for all backend types
* |/O combined for all contexts

backend_type i0_context

| | | | | | | | |
————————————————————— R e e et e et T T
autovacuum launcher | relation | bulkread | 0 | o | | 8192 | 0 | 0 |
autovacuum launcher | relation | normal | 11 @ | | 8192 | 0 | | 0
autovacuum worker | relation | bulkread | 0 | 0 | | 8192 | /I /0
autovacuum worker | relation | nhormal | 174 | o | 11 | 8192 | /I | 0
autovacuum worker | relation | vacuum | 125 | e | 0 | 8192 | 0 | CE
client backend | relation | bulkread | 891 | Q | | 8192 | 0 | 130 |
client backend | relation | bulkwrite | 891 | Q | 0 | 8192 | 0 | @ |
client backend | relation | hormal | 191 | 0 | /I 8192 | /I | 0
client backend | relation | vacuum | 0 | o | /I 8192 | /I 0 |
client backend | temp relation | normal | 0 | e | 0 | 8192 | 0 | |
background worker | relation | bulkread | Q| @ | | 8192 | 0 | @ |
background worker | relation | bulkwrite | 0 | 0 | 0 | 8192 | 0 | 0 |
background worker | relation | hormal | 0 | 0 | 0 | 8192 | /I | 0
background worker | relation | vacuum | 0 | @ | /I 8192 | /I 0 |
Stat lO background woﬂ<er | temp rfelation | normal | 0 | Q | 0 | 8192 | 0 | |
pg— — background writer | relation | normal | | @ | | 8192 | | | 0
1 6 checkpointer | relation | hormal | | 894 | | 8192 | | | 248
pg standalone backend | relation | bulkread | 0 | o | | 8192 | /I 0 |
standalone backend | relation | bulkwrite | 0 | @ | 8 | 8192 | 0 | |
standalone backend | relation | normal | 689 | 983 | 470 | 8192 | 0 | |
standalone backend | relation | vacuum | 10 | 0 | 0 | 8192 | 0 | |
startup | relation | bulkread | 0 | 0 | | | /I |
startup | relation | bulkwrite | 0 | o | | | /I |
startup | relation | normal | 0 | Q | | | 0 | |
startup | relation | vacuum | 0 | o | I I 0 | |
walsender | relation | bulkread | 0 | 0 | | | /I |
walsender | relation | bulkwrite | 0 | o | | | /I |
walsender | relation | normal | 0 | @ | | | 0 | |
walsender | relation | vacuum | 0 | Q | | | 0 | |
walsender | temp relation | normal | 0 | 0 | | | 0 | |

backend_type, 1o0_object, 1io_context,

reads, writes, extends, evictions, reuses, fsyncs

Why Count Flushes and Extends
Separately?

pg_stat_1io
e write = flush
« extend = extend

Postgres UPDATE/INSERT 1/0O
Workflow

1. Find a disk block with
enough space to fit the
new data

INSERT INTO foo VALUES(1,1),

Postgres UPDATE/INSERT 1/0O
Workflow

1. Find a disk block with
enough space to fit the
new data

I. If no block has enough
free space, extend the
file. foo

INSERT INTO foo VALUES(1,1),

Postgres UPDATE/INSERT 1/0O
Workflow

INSERT INTO foo VALUES(1,1),

shared foo
| bﬂmm ‘
2. Check for the block in Y | | —
shared buffers. PN }[} ‘
i. Ifitis already loadedNo /0] |
cache hit! negde

Postgres UPDATE/INSERT 1/0O
Workflow

INSERT INTO foo VALUES(1,1),

shared foo
bﬂmm
3. Otherwise, find a shared ‘ o
buffer we can use. Flush = h

[. L . : i .t "
. Ifitis dirty, flush it. pg_r;t?at_lig

Postgres UPDATE/INSERT 1/0O
Workflow

INSERT INTO foo VALUES(1,1),

shared foo

bulfers

loa
A

[\

4. Read our block into the
buffer.

Postgres UPDATE/INSERT 1/0O
Workflow

INSERT INTO foo VALUES(1,1),

shared foo

bﬂmm

I

5. Write our data into the buffer.

Why Count Flushes and Extends
Separately?

* Synchronous flushes are flush

avoidable 0

m

flus
h

extend

Why Track I/O Per Context or Per
Backend Type?

pg_stat_1io

 backend type
* jo_context

Postgres Autovacuum Workflow

1. Identify the next block to [o, 3,15 6]
vacuum.

foo |

Postgres Autovacuum Workflow

[(D, 3, 5/ 6 J

2. Check for the block In

shared foo

shared buffers. [bquers

. Ifitis, vacuum it! (cache
hit)

Postgres Autovacuum Workflow

[G), 3,5 6]

shared foo
bu](ers J
3. Otherwise, find the next X
reserved bUﬁer tO use. . <[}reservation
i. If we are not at the .

reservation cap, evict a
shared buffer.

Postgres Autovacuum Workflow

[®, 3,15 6 J

shared foo

buffers

N\ (
J\

3. Otherwise, find the next ‘

reserved buffer to use.

-
A\ AN
>
VAN

! reservation
cap: 4
| = “used: 4 flus

ii. If we are reusing a dirty,
reserved buffer, flush it.

Postgres Autovacuum Workflow

[(), 3, 5/ 6 J

shared foo

buffers b ‘

e
o loa
l T | d

. \

) reservation
cap: 4
“used: 4

4. Read the block into the buffer.

Postgres Autovacuum Workflow

[(), 3, 5/ 6 J

shared foo

D\ (
N\ (
J\

-
A\ AN
\(
VAN

reservation
cap: 4
“used: 4

5. Vacuum the buffer and mark it
dirty.

Postgres Autovacuum Workflow

shared foo
i buffers b
& VAN J
4 N\, N\
(N L J
4 \/)
& VAN J

6. Upon completing vacuum cycle,
return all reserved buffers.

Why Track I/O Per Backend Type?

 Not all I/O iIs for blocks client backend read
that are part of the —) ~
working set L =
* Autovacuum worker reads k }{ }

often are of older data

loa
A

u

Why Track I/O Per Context?

 Shared buffers not used
for all 1/0

* Vacuum I/O not in shared
buffers

client backend normal
context

)

(;/

<

flush

loa
A

|

|

autovacuum worker vacuum

\9 |

flus

-

h

- flus

S

loa

d

flus

Y 1

n

Analytic Workload 1/O
Characteristics

High number of extends High number of reads
during bulk load operations during bulk read operations
like of data not in shared

COPY FROM. butrers.

foo shared foo
(bu]fers] | ‘
|\
4 N\
« :uu |
2
|

S

Why Track I/O Per Context?

 Shared buffers not used
for all 1/0

» Large* SELECTs not in
shared buffers

*large = table blocks > shared

I, .LC o I N

large SELECT (bulkread
sharedCOﬂteXt) readroo

.

f bu]rers]

]

client backend normal context
——p—=CaChe miss

evict loa

<

Why Count Flushes and Extends
Separately?

e COPY FROM does lots of
extends

e Extends are normal for

bulk writes e bl - T
L

Data-Driven Tuning with
pg stat Io

Shared Buffers

Too Small backend_type | 1o_object | 1o_context | reads

client backend | relation | normal | 128443922

e client_backend normal context
reads high

backend_type | 10_object | 1o_context | writes

Background
Writer Too
Passive

client backend | relation | normal | 9986222
background writer | relation | normal | 776549

e client backend normal context writes
high

* background writer normal context
writes high

backend_type | 1o_object | 1o_context | reads
———————————————— e e R

Shared Buffers

Not Too Small client backend | relation | bulkread | 9986222

client backend | relation | normal 210

e client backend normal context reads
not high

e client backend bulkread context reads
high
OR

e ANii1Fnv/iaciniirmm wnarlar \71acinnirm rantavi

Future
additions

* |/O timing
* "bypass” IO

Contact me:
@melanieplage
man

	Diapo 1
	Melanie Plageman
	Transactional Workload I/O Performance Goals
	Common I/O Performance Issue Causes
	Postgres I/O Tuning Targets
	Postgres I/O Statistics Views
	Postgres I/O Statistics Views’ Gaps
	pg_stat_io (pg 16)
	Why Count Flushes and Extends Separately?
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Why Count Flushes and Extends Separately?
	Why Track I/O Per Context or Per Backend Type?
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Why Track I/O Per Backend Type?
	Why Track I/O Per Context?
	Analytic Workload I/O Characteristics
	Why Track I/O Per Context?
	Why Count Flushes and Extends Separately?
	Data-Driven Tuning with pg_stat_io
	Shared Buffers Too Small
	Background Writer Too Passive
	Shared Buffers Not Too Small
	Future additions

